JP Journal of Fixed Point Theory and Applications

NUMBER OF ZEROS OF POLAR DERIVATIVES OF POLYNOMIALS

P. Ramulu and G. L. Reddy
Department of Mathematics
M. V. S. Govt. Arts and Science College (Autonomous)
Mahabubnagar, Telangana, 509001, India
e-mail: ramulu.purra@gmail.com
School of Mathematics and Statistics
University of Hyderabad
Telangana, 500046, India
e-mail: glrsm@uohyd.ernet.in

Abstract

In this paper, we estimate the maximum number of zeros of polar derivatives of polynomials by considering more general coefficient conditions in a prescribed region. The results which we obtain generalize and improve some of the well known results.

1. Introduction

Let $D_{\alpha} P(z)=n P(z)+(\alpha-z) P^{\prime}(z)$ denote the polar derivative of a polynomial $P(z)$ of degree n with respect to real or complex number α. Then polynomial $D_{\alpha} P(z)$ is of degree at most $n-1$ and it generalizes the
ordinary derivative in the sense that $\lim _{\alpha \rightarrow \infty} \frac{D_{\alpha} P(z)}{\alpha}=P^{\prime}(z)$. Many results on the location of zeros of polynomials and zeros of polar derivatives are available in the literature [1-5]. Concerning the number of zeros of the polynomial in the region $|z| \leq \frac{1}{2}$, the following result is due to Mohammad [6].

Theorem A. Let $P(z)=\sum_{i=0}^{n} a_{i} z^{i}$ be a polynomial of degree n such that $0<a_{0} \leq a_{1} \leq \cdots \leq a_{n-1} \leq a_{n}$. Then the number of zeros of $P(z)$ in $|z| \leq \frac{1}{2}$, does not exceed $1+\frac{1}{\log 2} \log \frac{a_{n}}{a_{0}}$.

In this paper, we prove the following results.
Theorem 1. Let $P(z)=\sum_{i=0}^{n} a_{i} z^{i}$ be a polynomial of degree n with $\operatorname{Re}\left(a_{i}\right)=\alpha_{i}, \operatorname{Im}\left(a_{i}\right)=\beta_{i} \quad$ for $\quad i=0,1,2, \ldots, n \quad$ and $\quad D_{\alpha} P(z)=n P(z)+$ $(\alpha-z) P^{\prime}(z)$ be the polar derivative of $P(z)$ with respect to a real number α such that $\alpha a_{1}+a_{0} \neq 0$ and

$$
\begin{aligned}
& {[i+2] \alpha \alpha_{i+2}+[n-(i+1)] \alpha_{i+1} \geq(i+1) \alpha \alpha_{i+1}+(n-i) \alpha_{i}} \\
& {[i+2] \alpha \beta_{i+2}+[n-(i+1)] \beta_{i+1} \geq(i+1) \alpha \beta_{i+1}+(n-i) \beta_{i}}
\end{aligned}
$$

for $i=0,1,2, \ldots, n-2$. Then the number of zeros of $D_{\alpha} P(z)$ in $|z| \leq \frac{R}{C}(C>1, R>0)$, does not exceed

$$
\frac{R^{n}\left[\left|n \alpha a_{n}+a_{n-1}\right|+n \alpha\left[\alpha_{n}+\beta_{n}\right]+\left[\alpha_{n-1}+\beta_{n-1}\right]\right.}{\left.-\alpha\left[\alpha_{1}+\beta_{1}\right]-n\left[\alpha_{0}+\beta_{0}\right]+\left|\alpha a_{1}+n a_{0}\right|\right]}-\quad \text { if } R \geq 1
$$

and

$$
\begin{gathered}
R\left[\left|n \alpha a_{n}+a_{n-1}\right|+n \alpha\left[\alpha_{n}+\beta_{n}\right]+\left[\alpha_{n-1}+\beta_{n-1}\right]\right. \\
\left.-\alpha\left[\alpha_{1}+\beta_{1}\right]-n\left[\alpha_{0}+\beta_{0}\right]+\left|\alpha a_{1}+n a_{0}\right|\right] \\
\left|\alpha a_{1}+n a_{0}\right| \\
\log C \\
\log \frac{1}{-} R \leq 1 .
\end{gathered}
$$

Corollary 1. Let $P(z)=\sum_{i=0}^{n} a_{i} z^{i}$ be a polynomial of degree n with $\operatorname{Re}\left(a_{i}\right)=\alpha_{i}, \operatorname{Im}\left(a_{i}\right)=\beta_{i} \quad$ for $\quad i=0,1,2, \ldots, n \quad$ and $\quad D_{\alpha} P(z)=n P(z)+$ $(\alpha-z) P^{\prime}(z)$ be the polar derivative of $P(z)$ with respect to a real number α such that $\alpha a_{1}+a_{0} \neq 0$ and

$$
[i+2] \alpha \alpha_{i+2}+[n-(i+1)] \alpha_{i+1} \geq(i+1) \alpha \alpha_{i+1}+(n-i) \alpha_{i}
$$

for $i=0,1,2, \ldots, n-2$. Then the number of zeros of $D_{\alpha} P(z)$ in $|z| \leq r, 0<r<1$, does not exceed

$$
\begin{array}{r}
{\left[\left|n \alpha \alpha_{n}+\alpha_{n-1}\right|+n \alpha \alpha_{n}+\alpha_{n-1}-\alpha \alpha_{1}-n \alpha_{0}+\left|\alpha \alpha_{1}+\alpha_{0}\right|\right.} \\
\frac{1}{\log \frac{1}{r}} \log \frac{\left[\sum_{i=0}^{n-1}\left|(i+1) \alpha \beta_{i+1}+(n-i) \beta_{i}\right|\right]}{\left|\alpha a_{1}+n a_{0}\right|}
\end{array}
$$

Corollary 2. Let $P(z)=\sum_{i=0}^{n} a_{i} z^{i}$ be a polynomial of degree n with real coefficients and $D_{\alpha} P(z)=n P(z)+(\alpha-z) P^{\prime}(z)$ be the polar derivative of $P(z)$ with respect to a real number α such that $\alpha a_{1}+a_{0} \neq 0$ and $[i+2] \alpha a_{i+2}+[n-(i+1)] a_{i+1} \geq(i+1) \alpha a_{i+1}+(n-i) a_{i}$, for $i=0$, $1,2, \ldots, n-2$. Then the number of zeros of $D_{\alpha} P(z)$ in $|z| \leq \frac{1}{2}$, does not exceed

$$
\frac{1}{\log 2} \log \frac{\left[\left|n \alpha a_{n}+a_{n-1}\right|+n \alpha a_{n}+a_{n-1}-\alpha a_{1}-a_{0}+\left|\alpha a_{1}+n a_{0}\right|\right]}{\left|\alpha a_{1}+n a_{0}\right|} .
$$

Remark 1. Taking $R=1, C=\frac{1}{r}, 0<r<1$, removing conditions on β_{i} in Theorem 1 and rearranging coefficients, we get Corollary 1.

Remark 2. Taking $R=1, C=\frac{1}{2}$ and $\beta_{i}=0$ for $i=0,1, \ldots, n$ in Theorem 1, we get Corollary 2.

Theorem 2. Let $P(z)=\sum_{i=0}^{n} a_{i} z^{i}$ be a polynomial of degree n with $\operatorname{Re}\left(a_{i}\right)=\alpha_{i}, \quad \operatorname{Im}\left(a_{i}\right)=\beta_{i} \quad$ for $\quad i=0,1,2, \ldots, n \quad$ and $\quad D_{\alpha} P(z)=n P(z)+$ $(\alpha-z) P^{\prime}(z)$ be the polar derivative of $P(z)$ with respect to a real number α such that $\alpha a_{1}+a_{0} \neq 0$ and

$$
\begin{aligned}
& {[i+2] \alpha \alpha_{i+2}+[n-(i+1)] \alpha_{i+1} \leq(i+1) \alpha \alpha_{i+1}+(n-i) \alpha_{i},} \\
& {[i+2] \alpha \beta_{i+2}+[n-(i+1)] \beta_{i+1} \leq(i+1) \alpha \beta_{i+1}+(n-i) \beta_{i},}
\end{aligned}
$$

for $i=0,1,2, \ldots, n-2$. Then the number of zeros of $D_{\alpha} P(z)$ in $|z| \leq \frac{R}{C}(C>1, R>0)$, does not exceed

$$
\begin{gathered}
R^{n}\left[\left|n \alpha a_{n}+a_{n-1}\right|-n \alpha\left[\alpha_{n}+\beta_{n}\right]-\left[\alpha_{n-1}+\beta_{n-1}\right]\right. \\
\left.+\alpha\left[\alpha_{1}+\beta_{1}\right]+n\left[\alpha_{0}+\beta_{0}\right]+\left|\alpha a_{1}+n a_{0}\right|\right] \\
\log C \\
\log \frac{1}{\left|\alpha a_{1}+n a_{0}\right|}
\end{gathered} \text { if } R \geq 1
$$

and

$$
\begin{gathered}
R\left[\left|n \alpha a_{n}+a_{n-1}\right|-n \alpha\left[\alpha_{n}-\beta_{n}\right]+\left[\alpha_{n-1}+\beta_{n-1}\right]\right. \\
\left.+\alpha\left[\alpha_{1}+\beta_{1}\right]+n\left[\alpha_{0}+\beta_{0}\right]+\left|\alpha a_{1}+n a_{0}\right|\right]
\end{gathered}\left|\alpha a_{1}+n a_{0}\right| \quad \text { if } R \leq 1 .
$$

Corollary 3. Let $P(z)=\sum_{i=0}^{n} a_{i} z^{i}$ be a polynomial of degree n with $\operatorname{Re}\left(a_{i}\right)=\alpha_{i}, \operatorname{Im}\left(a_{i}\right)=\beta_{i} \quad$ for $i=0,1,2, \ldots, n \quad$ and $\quad D_{\alpha} P(z)=n P(z)+$ $(\alpha-z) P^{\prime}(z)$ be the polar derivative of $P(z)$ with respect to a real number α such that $\alpha a_{1}+a_{0} \neq 0$ and

$$
[i+2] \alpha \alpha_{i+2}+[n-(i+1)] \alpha_{i+1} \leq(i+1) \alpha \alpha_{i+1}+(n-i) \alpha_{i},
$$

for some $i=0,1,2, \ldots, n-2$. Then the number of zeros of $D_{\alpha} P(z)$ in $|z| \leq \frac{1}{2}$, does not exceed

Corollary 4. Let $P(z)=\sum_{i=0}^{n} a_{i} z^{i}$ be a polynomial of degree n with real coefficients and $D_{\alpha} P(z)=n P(z)+(\alpha-z) P^{\prime}(z)$ be the polar derivative of $P(z)$ with respect to a real number α such that $\alpha a_{1}+a_{0} \neq 0$ and $[i+2] \alpha a_{i+2}+[n-(i+1)] a_{i+1} \leq(i+1) \alpha a_{i+1}+(n-i) a_{i}$, for $i=0$, $1,2, \ldots, n-2$. Then the number of zeros of $D_{\alpha} P(z)$ in $|z| \leq r, 0<r<1$ does not exceed

$$
\frac{1}{\log \frac{1}{r}} \log \frac{\left[\left|n \alpha a_{n}+a_{n-1}\right|-n \alpha \alpha_{n}-\alpha_{n-1}+\alpha \alpha_{1}+n \alpha_{0}+\left|\alpha a_{1}+n a_{0}\right|\right]}{\left|\alpha a_{1}+n a_{0}\right|} .
$$

Remark 3. Taking $R=1, C=\frac{1}{2}$, and removing conditions on β_{i} in Theorem 2, we get Corollary 3.

Remark 4. Taking $R=1, C=\frac{1}{r}, \quad 0<r<1$ and $\beta_{i}=0$ for $i=0$, $1, \ldots, n$ in Theorem 2, and by rearranging coefficients, we get Corollary 4.

By rearranging the coefficient in Theorems 1 and 2, we get the following Theorems 3 and 4.

Theorem 3. Let $P(z)=\sum_{i=0}^{n} a_{i} z^{i}$ be a polynomial of degree n with $\operatorname{Re}\left(a_{i}\right)=\alpha_{i}, \quad \operatorname{Im}\left(a_{i}\right)=\beta_{i}$ for $i=0,1,2, \ldots, n$ and $D_{\alpha} P(z)=n P(z)+$ $(\alpha-z) P^{\prime}(z)$ be the polar derivative of $P(z)$ with respect to a real number α such that $\alpha a_{1}+a_{0} \neq 0$ and

$$
\begin{aligned}
& {[i+2] \alpha \alpha_{i+2}+[n-(i+1)] \alpha_{i+1} \geq(i+1) \alpha \alpha_{i+1}+(n-i) \alpha_{i},} \\
& {[i+2] \alpha \beta_{i+2}+[n-(i+1)] \beta_{i+1} \leq(i+1) \alpha \beta_{i+1}+(n-i) \beta_{i},}
\end{aligned}
$$

for $i=0,1,2, \ldots, n-2$. Then the number of zeros of $D_{\alpha} P(z)$ in $|z| \leq \frac{R}{C}(C>1, R>0)$, does not exceed

$$
\begin{gathered}
R^{n}\left[\left|n \alpha a_{n}+a_{n-1}\right|+n \alpha\left[\alpha_{n}-\beta_{n}\right]+\left[\alpha_{n-1}-\beta_{n-1}\right]\right. \\
\frac{1}{\log C} \log \frac{\left.-\alpha\left[\alpha_{1}-\beta_{1}\right]-n\left[\alpha_{0}-\beta_{0}\right]+\left|\alpha a_{1}+a_{0}\right|\right]}{\left|\alpha a_{1}+n a_{0}\right|},
\end{gathered} \text { if } R \geq 1
$$

and

$$
\begin{gathered}
R\left[\left|n \alpha a_{n}+a_{n-1}\right|+n \alpha\left[\alpha_{n}-\beta_{n}\right]+\left[\alpha_{n-1}-\beta_{n-1}\right]\right. \\
\frac{1}{\log C} \log \frac{\left.-\alpha\left[\alpha_{1}-\beta_{1}\right]-n\left[\alpha_{0}-\beta_{0}\right]+\left|\alpha a_{1}+a_{0}\right|\right]}{\left|\alpha a_{1}+n a_{0}\right|}, \quad \text { if } R \leq 1 .
\end{gathered}
$$

Theorem 4. Let $P(z)=\sum_{i=0}^{n} a_{i} z^{i}$ be a polynomial of degree n with $\operatorname{Re}\left(a_{i}\right)=\alpha_{i}, \quad \operatorname{Im}\left(a_{i}\right)=\beta_{i} \quad$ for $\quad i=0,1,2, \ldots, n \quad$ and $\quad D_{\alpha} P(z)=n P(z)+$ $(\alpha-z) P^{\prime}(z)$ be the polar derivative of $P(z)$ with respect to a real number α such that $\alpha a_{1}+a_{0} \neq 0$ and

$$
\begin{aligned}
& {[i+2] \alpha \alpha_{i+2}+[n-(i+1)] \alpha_{i+1} \leq(i+1) \alpha \alpha_{i+1}+(n-i) \alpha_{i}} \\
& {[i+2] \alpha \beta_{i+2}+[n-(i+1)] \beta_{i+1} \geq(i+1) \alpha \beta_{i+1}+(n-i) \beta_{i}}
\end{aligned}
$$

for $i=0,1,2, \ldots, n-2$. Then the number of zeros of $D_{\alpha} P(z)$ in $|z| \leq r, 0<r<1$ does not exceed

$$
\begin{gathered}
{\left[\left|n \alpha a_{n}+a_{n-1}\right|-n \alpha\left[\alpha_{n}-\beta_{n}\right]-\left[\alpha_{n-1}-\beta_{n-1}\right]\right.} \\
\frac{1}{\log \frac{1}{r}} \log \frac{\left.+\alpha\left[\alpha_{1}-\beta_{1}\right]+n\left[\alpha_{0}-\beta_{0}\right]+\left|\alpha a_{1}+n a_{0}\right|\right]}{\left|\alpha a_{1}+n a_{0}\right|} .
\end{gathered}
$$

We need the following lemma for the proofs of the above theorems.

2. Lemma

Lemma 1 [7]. If $f(z)$ is regular, $f(0) \neq 0$ and $|f(z)| \leq M(R)$ in $|z| \leq 1$. Then the number of zeros of $f(z)$ in $|z| \leq \frac{R}{C},(C>1, R>0)$ does not exceed $\frac{1}{\log C} \log \frac{M(R)}{|f(0)|}$.

3. Proof of the Theorems

Proof of Theorem 1. Let $P(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}$ be a polynomial of degree n with $\operatorname{Re}\left(a_{i}\right)=\alpha_{i}, \operatorname{Im}\left(a_{i}\right)=\beta_{i}$ for $i=0,1,2, \ldots, n$.

Denote by $D_{\alpha} P(z)=n P(z)+(\alpha-z) P^{\prime}(z)$ to be the polar derivative of $P(z)$ with respect to the real number α of degree $n-1$. This implies

$$
\begin{aligned}
D_{\alpha} P(z)= & {\left[n \alpha a_{n}+a_{n-1}\right] z^{n-1}+\left[(n-1) \alpha a_{n-1}+2 a_{n-2}\right] z^{n-2} } \\
& +\left[(n-2) \alpha a_{n-2}+3 a_{n-3}\right] z^{n-3}+\cdots+\left[3 \alpha a_{3}+(n-2) a_{2}\right] z^{2} \\
& +\left[2 \alpha a_{2}+(n-1) a_{1}\right] z+\left[\alpha a_{1}+n a_{0}\right]
\end{aligned}
$$

Now consider the polynomial $Q(z)=(1-z) D_{\alpha} P(z)$ so that

$$
\begin{aligned}
Q(z)= & -\left[n \alpha a_{n}+a_{n-1}\right] z^{n}+\left[n \alpha a_{n}+\{1-(n-1) \alpha\} a_{n-1}-2 a_{n-2}\right] z^{n-1} \\
& +\left[(n-1) \alpha a_{n-1}+\{2-(n-2) \alpha\} a_{n-2}-3 a_{n-3}\right] z^{n-2} \\
& +\cdots+\left[3 \alpha a_{3}+\{(n-2)-2 \alpha\} a_{2}-(n-1) a_{1}\right] z^{2} \\
& +\left[2 \alpha a_{2}+\{(n-1)-\alpha\} a_{1}-n a_{0}\right] z+\left[\alpha a_{1}+n a_{0}\right] \\
= & -\left[n \alpha a_{n}+a_{n-1}\right] z^{n} \\
& +\sum_{i=0}^{n-2}\left[[i+2] \alpha a_{i+2}+([n-(i+1)]-[i+1] \alpha) a_{i+1}-(n-i) a_{i}\right] z^{i} \\
& +\left[\alpha a_{1}+n a_{0}\right] .
\end{aligned}
$$

For $|z| \leq R$, we have

$$
\begin{aligned}
|Q(z)| \leq & \left|n \alpha a_{n}+a_{n-1}\right| R^{n} \\
& +\sum_{i=0}^{n-2}\left|\left[[i+2] \alpha a_{i+2}+([n-(i+1)]-[i+1] \alpha) a_{i+1}-(n-i) a_{i}\right]\right| R^{i} \\
& +\left|\alpha a_{1}+n a_{0}\right|
\end{aligned}
$$

$$
\leq\left|n \alpha a_{n}+a_{n-1}\right| R^{n}
$$

$$
+\sum_{i=0}^{n-2}\left|\left[[i+2] \alpha \alpha_{i+2}+([n-(i+1)]-[i+1] \alpha) \alpha_{i+1}-(n-i) \alpha_{i}\right]\right| R^{i}
$$

$$
+\sum_{i=0}^{n-2}\left|\left[[i+2] \alpha \beta_{i+2}+([n-(i+1)]-[i+1] \alpha) \beta_{i+1}-(n-i) \beta_{i}\right]\right| R^{i}
$$

$$
+\left|\alpha a_{1}+n a_{0}\right|
$$

$$
\leq\left|n \alpha a_{n}+a_{n-1}\right| R^{n}
$$

$$
+\sum_{i=0}^{n-2}\left[[i+2] \alpha \alpha_{i+2}+([n-(i+1)]-[i+1] \alpha) \alpha_{i+1}-(n-i) \alpha_{i}\right] R^{i}
$$

$$
+\sum_{i=0}^{n-2}\left[[i+2] \alpha \beta_{i+2}+([n-(i+1)]-[i+1] \alpha) \beta_{i+1}-(n-i) \beta_{i}\right] R^{i}
$$

$$
+\left|\alpha a_{1}+n a_{0}\right|
$$

$$
\leq\left\{\begin{array}{l}
R^{n}\left[\left|n \alpha a_{n}+a_{n-1}\right|+n \alpha\left[\alpha_{n}+\beta_{n}\right]+\left[\alpha_{n-1}+\beta_{n-1}\right]\right. \tag{1}\\
\left.\quad-\alpha\left[\alpha_{1}+\beta_{1}\right]-n\left[\alpha_{0}+\beta_{0}\right]+\left|\alpha a_{1}+n a_{0}\right|\right], \quad \text { if } R \geq 1 \\
R\left[\left|n \alpha a_{n}+a_{n-1}\right|+n \alpha\left[\alpha_{n}+\beta_{n}\right]+\left[\alpha_{n-1}+\beta_{n-1}\right]\right. \\
\left.\quad-\alpha\left[\alpha_{1}+\beta_{1}\right]-n\left[\alpha_{0}+\beta_{0}\right]\right]+\left|\alpha a_{1}+n a_{0}\right|, \quad \text { if } R \leq 1
\end{array}\right.
$$

Applying Lemma 1 to $Q(z)$, we get that the number of zeros of $Q(z)$ in $|z| \leq \frac{R}{C}(C>1, R>0)$, does not exceed
$R^{n}\left[\left|n \alpha a_{n}+a_{n-1}\right|+n \alpha\left[\alpha_{n}+\beta_{n}\right]+\left[\alpha_{n-1}+\beta_{n-1}\right]\right.$
(i) $\frac{1}{\log C} \log \frac{\left.-\alpha\left[\alpha_{1}+\beta_{1}\right]-n\left[\alpha_{0}+\beta_{0}\right]+\left|\alpha a_{1}+n a_{0}\right|\right]}{\left|\alpha a_{1}+n a_{0}\right|}, \quad$ if $R \geq 1$
and

$$
\begin{gathered}
R\left[\left|n \alpha a_{n}+a_{n-1}\right|+n \alpha\left[\alpha_{n}+\beta_{n}\right]+\left[\alpha_{n-1}+\beta_{n-1}\right]\right. \\
\text { (ii) } \frac{1}{\log C} \log \frac{\left.-\alpha\left[\alpha_{1}+\beta_{1}\right]-n\left[\alpha_{0}+\beta_{0}\right]+\left|\alpha a_{1}+n a_{0}\right|\right]}{\left|\alpha a_{1}+n a_{0}\right|}, \text { if } R \leq 1 .
\end{gathered}
$$

Hence the number of zeros of $D_{\alpha} P(z)$ in $|z| \leq \frac{R}{C}(C>1, R>0)$ is equal to the number of zeros of $Q(z)$ in $|z| \leq \frac{R}{C}(C>1)$.

This completes the proof of Theorem 1.
Proof of Theorem 2. Consider the polar derivative of the polynomial $P(z)$ as in the proof of Theorem 1. From equation (1) in the proof of Theorem 1, we have

$$
\begin{aligned}
|Q(z)| \leq & \left|n \alpha a_{n}+a_{n-1}\right| R^{n} \\
& +\sum_{i=0}^{n-2}\left|\left[[i+2] \alpha \alpha_{i+2}+([n-(i+1)]-[i+1] \alpha) a_{i+1}-(n-i) \alpha_{i}\right]\right| R^{i} \\
& +\sum_{i=0}^{n-2}\left|\left[[i+2] \alpha \beta_{i+2}+([n-(i+1)]-[i+1] \alpha) \beta_{i+1}-(n-i) \beta_{i}\right]\right| R^{i} \\
& +\left|\alpha a_{1}+n a_{0}\right| \\
\leq & \left|n \alpha a_{n}+a_{n-1}\right| R^{n}
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{i=0}^{n-2}\left[(n-i) \alpha_{i}+([i+1] \alpha-[n-(i+1)]) \alpha_{i+1}-[i+2] \alpha \alpha_{i+2}\right] R^{i} \\
& +\sum_{i=0}^{n-2}\left[(n-i) \beta_{i}+([i+1] \alpha-[n-(i+1)]) \beta_{i+1}-[i+2] \alpha \beta_{i+2}\right] R^{i} \\
& +\left|\alpha a_{1}+n a_{0}\right| \\
& \leq \begin{array}{c}
R^{n}\left[\left|n \alpha a_{n}+a_{n-1}\right|-n \alpha\left[\alpha_{n}+\beta_{n}\right]-\left[\alpha_{n-1}+\beta_{n-1}\right]+\alpha\left[\alpha_{1}+\beta_{1}\right]\right. \\
\left.+n\left[\alpha_{0}+\beta_{0}\right]+\left|\alpha a_{1}+n a_{0}\right|\right], \quad \text { if } R \geq 1, \\
R\left[\left|n \alpha a_{n}+a_{n-1}\right|-n \alpha\left[\alpha_{n}+\beta_{n}\right]-\left[\alpha_{n-1}+\beta_{n-1}\right]+\alpha\left[\alpha_{1}+\beta_{1}\right]\right. \\
\left.+n\left[\alpha_{0}+\beta_{0}\right]\right]+\left|\alpha a_{1}+n a_{0}\right|, \quad \text { if } R \leq 1 .
\end{array}
\end{aligned}
$$

Applying Lemma 1 to $Q(z)$, we get that the number of zeros of $Q(z)$ in $|z| \leq \frac{R}{C}(C>1, R>0)$, does not exceed

$$
\begin{gathered}
R^{n}\left[\left|n \alpha a_{n}+a_{n-1}\right|-n \alpha\left[\alpha_{n}+\beta_{n}\right]-\left[\alpha_{n-1}+\beta_{n-1}\right]\right. \\
\text { (i) } \frac{1}{\log C} \log \frac{\left.+\alpha\left[\alpha_{1}+\beta_{1}\right]+n\left[\alpha_{0}+\beta_{0}\right]+\left|\alpha a_{1}+n a_{0}\right|\right]}{\left|\alpha a_{1}+n a_{0}\right|}, \quad \text { if } R \geq 1
\end{gathered}
$$

and

$$
\begin{gathered}
R\left[\left|n \alpha a_{n}+a_{n-1}\right|-n \alpha\left[\alpha_{n}+\beta_{n}\right]-\left[\alpha_{n-1}+\beta_{n-1}\right]\right. \\
\text { (ii) } \frac{1}{\log C} \log \frac{\left.+\alpha\left[\alpha_{1}+\beta_{1}\right]+n\left[\alpha_{0}+\beta_{0}\right]+\left|\alpha a_{1}+n a_{0}\right|\right]}{\left|\alpha a_{1}+n a_{0}\right|}, \quad \text { if } R \leq 1 \text {. }
\end{gathered}
$$

Hence the number of zeros of $D_{\alpha} P(z)$ in $|z| \leq \frac{R}{C}(C>1, R>0)$ is also equal to the number of zeros of $Q(z)$ in $|z| \leq \frac{R}{C}(C>1)$.

This completes the proof of Theorem 2.
Similarly we can prove Theorem 3 and Theorem 4.

References

[1] G. Eneström, Remarquee sur un théorème relatif aux racines de l'equation $a_{n}+\cdots+a_{0}=0$ oü tous les coefficient sont et positifs, Tôhoku Math. J. 18 (1920), 34-36.
[2] S. Kakeya, On the limits of the roots of an algebraic equation with positive coefficient, Tôhoku Math. J. 2 (1912-1913), 140-142.
[3] P. Ramulu, Some generalization of Eneström-Kakeya theorem, International Journal of Mathematics and Statistics Invention (IJMSI) 3(2) (2015), 52-59.
[4] P. Ramulu and G. L. Reddy, On the Enestrom-Kakeya theorem, Int. J. Pure Appl. Math. 102(4) (2015), 687-700.
[5] P. Ramulu, G. L. Reddy and C. Gangadhar, On the zeros of polar derivatives of polynomials, Journal of Research in Applied Mathematics 2(4) (2015), 07-10.
[6] Q. G. Mohammad, On the zeros of the polynomials, Amer. Math. Monthly 72(6) (1965), 631-633.
[7] M. H. Gulzar, Number of zeros of a polynomial in a given circle, Research Inventy: International Journal of Engineering and Science 3(10) (2013), 12-17.

