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Abstract

In this paper, we estimate the maximum number of zeros of polar

derivatives of polynomials by considering more general coefficient

conditions in a prescribed region. The results which we obtain

generalize and improve some of the well known results.

1. Introduction

Let        zPzznPzPD   denote the polar derivative of a

polynomial  zP  of degree n with respect to real or complex number .

Then polynomial  zPD  is of degree at most 1n  and it generalizes the
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ordinary derivative in the sense that
   .lim zP
zPD 




 Many results

on the location of zeros of polynomials and zeros of polar derivatives are

available in the literature [1-5]. Concerning the number of zeros of the

polynomial in the region ,
2
1z the following result is due to Mohammad

[6].

Theorem A. Let     n
i

i
izazP

0
be a polynomial of degree n such

that nn aaaa  1100  . Then the number of zeros of  zP in

,
2
1z does not exceed .log

2log
1

1
0a

an

In this paper, we prove the following results.

Theorem 1. Let     n
i

i
izazP

0
be a polynomial of degree n with

    iiii aImaRe  , for ni ...,,2,1,0 and      znPzPD

   zPz  be the polar derivative of  zP with respect to a real number

 such that 001  aa and

         ,112 112 iiii iniini  

         ,112 112 iiii iniini  

for .2...,,2,1,0  ni Then the number of zeros of  zPD in
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Corollary 1. Let     n
i

i
izazP

0
be a polynomial of degree n with

    iiii aImaRe  , for ni ...,,2,1,0 and      znPzPD

   zPz  be the polar derivative of  zP with respect to a real number

 such that 001  aa and

         ,112 112 iiii iniini  

for .2...,,2,1,0  ni Then the number of zeros of  zPD in

,10,  rrz does not exceed
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Corollary 2. Let     n
i

i
izazP

0
be a polynomial of degree n

with real coefficients and        zPzznPzPD  be the polar

derivative of  zP with respect to a real number  such that 001  aa

and          ,112 112 iiii ainaiainai   for ,0i

.2...,,2,1 n Then the number of zeros of  zPD in ,
2
1z does not

exceed

 
.log

2log
1

01

010111
naa

naaaaaanaan nnnn


 

Remark 1. Taking ,10,
1

,1  r
r

CR  removing conditions on i

in Theorem 1 and rearranging coefficients, we get Corollary 1.

Remark 2. Taking
2
1

,1  CR  and 0i  for ni ...,,1,0  in

Theorem 1, we get Corollary 2.
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Theorem 2. Let     n
i

i
izazP

0
be a polynomial of degree n with

  ,iiaRe    iiaIm  for ni ...,,2,1,0 and      znPzPD

   zPz  be the polar derivative of  zP with respect to a real number

 such that 001  aa and

         ,112 112 iiii iniini  

         ,112 112 iiii iniini  

for .2...,,2,1,0  ni Then the number of zeros of  zPD in

 ,0,1  RC
C
R

z does not exceed

    
    

1,log
log

1

01

010011

111





 

Rif
naa

naan

naanR

C

nnnnnn
n

and

    
    

.1,log
log

1

01

010011

111





 

Rif
naa

naan

naanR

C

nnnnnn

Corollary 3. Let     n
i

i
izazP

0
be a polynomial of degree n with

    iiii aImaRe  , for ni ...,,2,1,0 and      znPzPD

   zPz  be the polar derivative of  zP with respect to a real number

 such that 001  aa and

         ,112 112 iiii iniini  

for some .2...,,2,1,0  ni Then the number of zeros of  zPD in

,
2
1z does not exceed
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Corollary 4. Let     n
i

i
izazP

0
be a polynomial of degree n with

real coefficients and        zPzznPzPD  be the polar

derivative of  zP with respect to a real number  such that 001  aa

and          ,112 112 iiii ainaiainai   for ,0i

.2...,,2,1 n Then the number of zeros of  zPD in 10,  rrz

does not exceed

 
.log

1
log

1

01

010111
naa

naannaan

r

nnnn


 

Remark 3. Taking ,
2
1

,1  CR and removing conditions on i  in

Theorem 2, we get Corollary 3.

Remark 4. Taking ,1R ,
1
r

C  10  r  and 0i  for ,0i

n...,,1  in Theorem 2, and by rearranging coefficients, we get Corollary 4.

By rearranging the coefficient in Theorems 1 and 2, we get the following

Theorems 3 and 4.

Theorem 3. Let     n
i

i
izazP

0
be a polynomial of degree n with

  ,iiaRe    iiaIm  for ni ...,,2,1,0 and      znPzPD

   zPz  be the polar derivative of  zP with respect to a real number

 such that 001  aa and

         ,112 112 iiii iniini  

         ,112 112 iiii iniini  
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for .2...,,2,1,0  ni Then the number of zeros of  zPD in

 ,0,1  RC
C
R

z does not exceed

    
    

1,log
log
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Theorem 4. Let     n
i

i
izazP

0
be a polynomial of degree n with

  ,iiaRe    iiaIm  for ni ...,,2,1,0 and      znPzPD

   zPz  be the polar derivative of  zP with respect to a real number

 such that 001  aa and

         ,112 112 iiii iniini  

         ,112 112 iiii iniini  

for .2...,,2,1,0  ni Then the number of zeros of  zPD in

10,  rrz does not exceed

    

    
.log

1
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111
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naan

r

nnnnnn




 

We need the following lemma for the proofs of the above theorems.
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2. Lemma

Lemma 1 [7]. If  zf is regular,   00 f and    RMzf  in

.1z Then the number of zeros of  zf in  0,1,  RC
C
R

z does

not exceed
 
  .
0

log
log

1
f

RM
C

3. Proof of the Theorems

Proof of Theorem 1. Let   01
1

1 azazazazP n
n

n
n  

   be a

polynomial of degree n with     iiii aImaRe  , for ....,,2,1,0 ni 

Denote by        zPzznPzPD  to be the polar derivative of

 zP  with respect to the real number  of degree .1n This implies

       2
21

1
1 21 




  n
nn

n
nn zaanzaanzPD

      2
23

3
32 2332 zanazaan n

nn  
 

    .12 0112 naazana 

Now consider the polynomial      zPDzzQ  1  so that

        1
211 211 
  n

nnn
n

nn zaananzaanzQ

      2
321 3221 
  n

nnn zaanan

      2
123 1223 zanana 

     01012 12 naaznaana 

  n
nn zaan 1

          



 

2

0
12 112

n

i

i
iii zainaiinai

 .01 naa 
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For ,Rz   we have

  n
nn RaanzQ 1
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0
12 112

n

i

i
iii Rainaiinai

01 naa 

n
nn Raan 1

          



 

2
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12 112
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n
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nnnnnn

nnnnnn
n

(1)
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Applying Lemma 1 to  ,zQ  we get that the number of zeros of  zQ  in

 ,0,1  RC
C
R

z does not exceed

(i)

    
    

1if,log
log

1

01

010011

111





 

R
naa
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naanR

C

nnnnnn
n

and

(ii)
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log
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R
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C

nnnnnn

Hence the number of zeros of  zPD  in  0,1  RC
C
R

z is

equal to the number of zeros of  zQ  in  .1 C
C
R

z

This completes the proof of Theorem 1.

Proof of Theorem 2. Consider the polar derivative of the polynomial

 zP  as in the proof of Theorem 1. From equation (1) in the proof of

Theorem 1, we have

  n
nn RaanzQ 1
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0
12 112

n
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n
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n
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Applying Lemma 1 to  ,zQ  we get that the number of zeros of  zQ  in

 ,0,1  RC
C
R

z does not exceed

(i)

    
    

1if,log
log

1
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n

and

(ii)
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01
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R
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C
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Hence the number of zeros of  zPD  in  0,1  RC
C
R

z is

also equal to the number of zeros of  zQ  in  .1 C
C
R

z

This completes the proof of Theorem 2.

Similarly we can prove Theorem 3 and Theorem 4.
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